Organic Wheat Selection Through GGE Biplot Analysis


  • Merve Bayhan Dicle Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü
  • Mehmet YILDIRIM Dicle Üniversitesi Ziraat Fakültesi Tarla Bitkileri Bölümü



Organic, Bread wheat, Yield, Quality, GGE Biplot


The aim of this study is to determine the performances of bread wheat genotypes under organic and conventional conditions. In addition, suitable genotypes for organic conditions determines by GGE biplot analysis. The study was carried out in the research and application area of Dicle University Faculty of Agriculture in Diyarbakır in rainy conditions during the 2019-2020 production season. In this study, materials were used as follows: 27 bread wheat genotypes from local cultivars and 3 check cultivars (Empire, Pehlivan and Ceyhan-99). Genotype adaptation and stability were evaluated by GGE biplot analysis on the basis of grain yield and quality characteristics (protein ratio and wet gluten). Genotypes have shown different performances in different environments. While genotype number 8 showed the best performance in organic conditions both in terms of yield and quality characteristics, genotypes numbered 19 and 22 had the highest values ​​in terms of yield and quality characteristics in conventional conditions. Genotype numbered 19 in terms of grain yield and genotypes numbered 2, 7 and 12 in terms of quality characteristics are the most ideal genotypes due to their high yield means and stability. These genotypes can be used directly as parents in organic production or in breeding programs for the development of new wheat varieties.


Atkinson, M., Kettlewell, P.S., Poulton, P.R., Hollings, P.D. 2008. Grain quality in the Broadbalk wheat experiment and the winter North Atlantic oscillation. Journal of Agricultural Science, 146: 541-549.

Badu-Apraku, B., Oyekunle, M., Obeng-Antwi, K., Osuman, A., Ado, S., Coulibay, N., Yallou, C.G., Abdulai, M., Boakyewaa, G.A., Didjeira, A. 2012. Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. The Journal of Agricultural Science, 150: 473-483.

Ceccarelli, S. 1989. Wide adaptation. How wide? Euphytica, 40: 197-205.

Cooper, M., Podlich, D.W., Luo, L. 2007. In: Varshney, R. and Tuberosa, R., Eds., Modeling QTL Effects and MAS in Plant Breeding. Genomics-Assisted Crop Improve- ment, Springer, Dordrecht, The Netherlands, 1: 57-96.

Gitay, H., Brown, S., Easterling, W., Jallow, B. 2001. Ecosystems and their goods and services. In: McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J. and White, K.S., Eds., Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 237-342.

Hagos, H.G., Abay, F. 2013. AMMI and GGE biplot analysis of bread wheat genotypes in the Northern part of Ethiopia. J. Plant Breed Gen., 1(1): 12-18.

Hammer, K., Gladis, T.H. 2001. Nutzung genetischer ressourcen-ökologischer wert der biodivesität. Sympo- sium der AG Genetische Ressourcen der Gesellschaft fur Pflanzenzuchtung, 23-24 November 2000, Witzenhausen, Schriften zu Genetischer Ressoursen 16, ZADI, Bonn.

Karaman, M. 2020. Yazlık ekmeklik buğday (Triticum aestivum L.) genotiplerinin tarımsal özellikler bakımından değerlendirilmesi. ISPEC Journal of Agricultural Sciences. 4: 68-81.

Karaman, M., Seydoşoğlu, S., Çam, B. 2020. Diyarbakır ili koşullarında augmented deneme deseninde ekmeklik buğday (Triticum aestivum L.) genotiplerinin tarımsal özellikler yönünden incelenmesi. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 7(9): 195-205.

Kaya, Y., Akçura, M. 2014. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol., 34(2): 386-393.

Kendal, E. 2019. Comparing durum wheat cultivars by genotype × yield ×trait and genotype × trait biplot method. Chilean Journal of Agricultural Research, 79(4): 512-522.

Kızılgeçi, F., Albayrak, Ö., Yıldırım, M., Akinci, C., Bicer, T. 2019. Evaluation of yield and yield components of some Turkish maize landraces grown in South-Eastern Anatolia, Turkey by biplot analysis. Asian Journal of Agriculture, 7: 583-592.

Koutis, K.G. Mavromatis, A., Baxevanos, D., Koutsika-Sotiriou, M. 2012. Multienvironmental evaluation of wheat landraces by GGE biplot analysis for organic breeding. Agricultural Sciences, 3: 66-74.

Lammerts van Bueren, E.T., Van Soest, L.J.M., De Groot, E.C., Boukema, I.W., Osman, A.M. 2005. Broadening the genetic base of onion to develop better-adapted varieties for organic farming systems. Euphytica, 146: 125-132.

Matus-Cadiz, M.A., Hucl, P., Perron, C.E., Tyler, R.T. 2003. Genotype × environment interaction for grain color in hard white spring wheat. Crop Sci., 43: 219-226.

Moragues, M., Garcia del Moral, L.F., Moralejo, M., Royo, C. 2006. Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin. I. Yield components. Field Crops Research, 95: 194-205.

Oyekunle, M., Haruna, A., Badu-Apraku, B., Usman, I. S., Mani, H., Ado, S. G., Olaoye, G., Obeng-Antwi, K., Abdulmalik, R.O., Ahmed, H.O. 2017. Assessment of early-maturing maize hybrids and testing sites using GGE biplot analysis. Crop Science, 57: 2942-2950.

Paramesh, M., Reddy, D., Priya, M.S., Sumathi, P., Sudhakar, P., Reddy, K. 2016. GT biplot analysis for yield and drought related traits in mung bean (Vigna radiata L. Wilczek). Electronic Journal of Plant Breeding, 7: 538-543.

Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M., Fischer, G. 2004. Effects of climate change on global food production under SRES emissions and socio- economic scenarios. Global Environmental Change, 14: 53-67.

Suresh, S. 2020. GGE biplot based stability analysis of durum wheat genotypes using statistical package GGE Biplot GUI. International Journal of Agriculture Environment and Biotechnology, 13.

Sagar, V., Yadav, R., Jain, N., Gaikwad, K.B., Prabhu, K.V. 2014. Consolidating the yield gain by exploiting genotype × management interaction in wheat. Ind. J. Gen Pl Breed, 74(2): 157-165.

Santos, A., Ceccon, G., Teodoro, P.E., Correa, A.M., Alvarez, R.D.C.F., Silva, J.F. and Alves, V.B. 2016. Adaptabilidade e estabilidade de genótipos de feijão caupi ereto via REML/BLUP e GGE Biplot. Bragantia, 75: 299-306.

Solonechnyi, P., Vasko, N., Naumov, A., Solonechnaya, O., Vazhenina, O., Bondareva, O., Logvinenko, Y. 2015. GGE biplotanalysis of genotype by environment interaction of spring barley varieties. Zemdirbyste- Agriculture, 102(4): 431-436.

Tekdal, S., Kendal, E., Aktaş, H., Karaman, M., Doğan, H., Bayram, S., Düzgün, M., Efe, A. 2017. Biplot analiz yöntemi ile bazı makarnalık buğday hatlarının verim ve kalite özelliklerinin değerlendirilmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 68-73.

Wickham, H. 2009. GGPLOT2: Elegant graphics for data analysis. New York: Springer.

Wolfe, M.S., Baresel, J.P., Desclaux, D., Goldringer, I., Hoad S., Kovacs, G., Löschenberger, F., Miedaner, T., Østergård, H., Lammerts van Bueren, E.T. 2008. Developments in breeding cereals for organic agriculture. Euphytica, 163: 323-346.

Yan, W. 2001. GGE biplot—a windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93: 1111-1118.

Yan, W. 2014. Crop variety trials: data management and analysis. Chichester: John Wiley & Sons.

Yan, W., Holland, J.B. 2010. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171: 355-369.

Yan, W., Tinker, N.A. 2006. Biplot analysis of multi-environment trial data: principles and applications. Can. Plant Sci., 86: 623-645.

Yokomızo, G.K.I., Farıas Neto, J.T., Olıveıra, M.S.P., Hongyu, H. 2017. Análise GGE Biplot na avaliação de características de cachos em açaizeiros da região Amazônica. Mundo Amazônico, 8(1): 115-130.



How to Cite

Bayhan, M., & YILDIRIM, M. (2021). Organic Wheat Selection Through GGE Biplot Analysis. ISPEC Journal of Agricultural Sciences, 5(2), 426-438.