Effects of Tobacco Waste and Its Compost on The Health of a Typic Xerofluvent Soil and The Yield of Paprika (Capsicum annuum L.)

Authors

  • Hüseyin Hüsnü KAYIKÇIOĞLU Ege Üniversitesi Ziraat Fakültesi Toprak Bilimi ve Bitki Besleme Bölümü
  • Nur OKUR Ege Üniversitesi Ziraat Fakültesi Toprak Bilimi ve Bitki Besleme Bölümü

DOI:

https://doi.org/10.46291/ISPECJASvol4iss2pp184-210

Keywords:

Azotobacter, soil chemical properties, nitrification bacteria, microbial biomass C-N-P, soil hydrolytic enzymes, dehydrogenase

Abstract

A study was conducted in 2008 in a randomized blocks with four replications on Typic Xerofluvent to demonstrate the potential of using tobacco wastes on soils. Raw tobacco waste (T) and tobacco waste compost (TK) were applied at the rates of 20 and 40 t ha-1 while nitrogen fertilizers were applied at the doses of 150 and 300 kg N ha-1. The parameters of microbial-C, N and P (Cmik, Nmik, Pmik), enzymes (alkalinephosphatase, ALKPA; β-glucosidase, GLU; arylsulfatase, ArSA; protease, PRO; urease, UA; dehydrogenase, DHG), microbial population (ammoniumoxidizer and nitriteoxidizing bacteria, AOB and NOB; general bacteria, GB; azotobacter, AZB; general fungus, GF) and chemical properties (soil reaction, pH; salinity, EC; organic matter, Corg; total nitrogen, Nt) were determined. Organics increased in Cmik, Nmik and Pmik. The effect of nitrogen on enzyme activities was not significant. T was the most encouraging treatment for communities except AZB which was stimulated by TK treatments more. T and TK increased in AOB by an average of 585% and 354%, respectively. Corg and Nt were increased by T. The highest unit yield was 192.6 and 192.3 t ha-1 in N2T2 and N0T2, respectively. It can be seen that raw tobacco waste can be applied at a level of 40 t ha-1 in irrigated crops growing, and 40 t ha-1 dose of tobacco waste compost will be a better choice in crop cultivation which is more sensitive to salinity under the influence of the Mediterranean climate.

References

Aggelides, S.M. and Londra, P.A. 2000. Effects of Compost Produced From Town Wastes and Sewage Sludge on The Physical Properties of a Loamy and a Clay Soil. Bioresource Technology, 71: 253-259.

Ahrens, E. 1966. Zur Frage der C-Quelle für den Quantitativen Nachweis von Azotobacter. Bodenbiologie, Inst. Mitteilungsblatt Inst. Pasteur, Paris, 5, 22.

Alexander, D.B. 1998. Bacteria and Archaea. In D.M. Sylvia et al. (ed.) Principles and Application of Soil Microbiology. Prentice Hall, Upper Saddle River, NJ. pp. 44-71.

Alexander, D.B. and Zuberer, D.A. 1989. Impact of Soil Environmental Factors on Rates of N2 Fixation Associated with Intact Maize and Sorghum Plants. In F.A. Skinner, R.M. Boodey and I. Fendrick (eds.). Nitrogen Fixation with Non-legumes. Kluwer Academic Pres, Dordrecht, The Netherlands. pp. 273-285.

Bedi, M.K., Jaitly, A.K. and Kanwar, K. 2009. Microbial Count in Soil as Influenced by the Addition of Organic and Inorganic Fertilizers Under Different Moisture Regimes. Research on Crops, 10(1): 72-76.

Belay, A., Claassens, A. and Wehner, F. 2002. Effect of Direct Nitrogen and Potassium and Residual Phosphorus Fertilizers on Soil Chemical Properties, Microbial Components and Maize Yield under Long-term Crop Rotation. Biology and Fertility of Soils, 35: 420-427.

Bingham, F.T. 1949. Soil Test for Phosphate. California Agriculture, 3(7): 11-14.

Bittman, S., Forge, T.A. and Kowalenko, C.G. 2005. Responses of the Bacterial and Fungal Biomass in a Grassland Soil to Multi-Year Applications of Dairy Manure Slurry and Fertilizer. Soil Biology and Biochemistry, 37(4): 613-623.

Black, C.A. 1965. Methods of Soil Analysis. Part I. Amer. Soc. of Agro., Inc., Publisher Madison, Wisconsin, USA.

Bouyoucos, G.J. 1962. Hydrometer Method Improved for Making Particle Size Analysis of Soil. Agronomy Journal, 54(5): 464-465.

Bremner, J.M. 1965. ‘Total Nitrojen”, in C.A. Black (Ed.) Methods of Soil Analysis, Part 2, American Society of Agronomy Inc., Madison, Wisconsin-USA. pp. 1149 - 1178.

Brookes P.C., Powlson D.S. and Jenkinson D.S. 1982. Measurement of Microbial Biomass Phosphorus in soil. Soil Biology and Biochemistry, 14: 319-329

Brookes P.C., Powlson D.S. and Jenkinson D.S. 1984. Phosphorus in the Soil Microbial Biomass. Soil Biology and Biochemistry, 16(2): 169-175.

Candemir, F., Kutluk-Yılmaz N.D. and Gülser, C. 2012. The Effect of Tobacco Waste Application on Tobacco Mosaic Virus (TMV) Concentration in the Soil. Žemdirbystė=Agriculture, 99(1): 99-104.

Cayuela, M.L., Sinicco, T., Mondini, C. 2009. Mineralization Dynamics and Biochemical Properties During Initial Decomposition of Plant and Animal Residues in Soil. Applied Soil Ecology, 41: 118-127.

Cercioglu, M., Okur, B., Delibacak, S. and Ongun, A.R. 2012. Effects of Tobacco Waste and Farmyard Manure on Soil Properties and Yield of Lettuce (Lactuca Sativa L. var. Capitata). Communications in Soil Science and Plant Analysis, 43: 875-886.

Chu, H., Fujii, T., Moritomo, S., Lin, X., Yagi, K., Hu, J. and Zhang, J. 2007. Community Structure of Ammonia-oxidizing Bacteria Under Long-term application of Mineral Fertilizer and Organic Manure in a Sandy Loam Soil. Applied and Environmental Microbiology, 73(2): 485-491.

Coşkun, Z., Özdemir, N. ve Öztürk, E. 2006. Aşınmış Toprakta Tütün Atığı ve Pam Uygulamasının Erozyona Karşı Duyarlılık ile Azot ve Fosfor Yarayışlılığına Etkileri. OMÜ Zir. Fak. Dergisi, 21(2): 218-224.

Çengel, M. 1978. Die Mikrobielle Dynamik in Versalzenen Türkischen Böden der Menemen und Salihli Ebene und in Aghängigketi vom Salszusatz. Dissertation. Institut für Landwirtschafliche Mikrobiologie der Justus Liebig Üniversität Giessen.

Eivazi, F. and Tabatabai, M.A. 1977. Phospahatases in Soils. Soil Biology and Biochemistry, 9: 167-172.

García, C., Hernández, T., Costa, F., Ceccanti, B. and Gani, A. 1993. Hydrolases in the Organic Matter Fractions of Sewage Sludge: Changes with Composting. Bioresource Technology, 45(1): 47-52.

García-Gil, J.C., Plaza, C., Soler-Rovira, P. and Polo, A. 2000. Long-term Effects of Municipal Solid Waste Compost Application on Soil Enzyme Activities and Microbial Biomass. Soil Biology and Biochemistry, 32(13): 1907-1913.

Gong, W., Yan, X., Wang, J., Hu, T. and Gong, Y. 2009. Long-term Manure and Fertilizer Effects on Soil Organic Matter Fractions and Microbes under A Wheat-Maize Cropping System in Northern China. Geoderma, 149(3-4): 181-426.

Gu, Y., Zhang, X., Tu, S. and Lindström, K. 2009. Soil Microbial Biomass, Crop Yields, and Bacterial Community Structure as Affected by Long-Term Fertilizer Treatments under Wheat-Rice Cropping. European Journal of Soil Biology; 45(3): 239-246.

Gulser, C., Demir. Z. and Ic. S. 2010. Changes in Some Soil Properties at Different Incubation Periods after Tobacco Dust Application. Journal of Environmental Biology, 31(5): 671-674.

Hao, X.H., Liu, S.L., Wu, J.S., Hu, R.G., Tong, C.L. and Su, Y.Y. 2008. Effect of Long-term Application of Inorganic Fertilizer and Organic Amendments on Soil Organic Matter and Microbial Biomass in Three Subtropical Paddy Soils. Nutrient Cycling in Agroecosystems, 81(1): 17-24.

Hatch, D.J., Lovell, R.D., Antil, R.S., Jarvis, S.C. and Owen, P.M. 2000. Nitrogen Mineralization and Microbial Activity in Permanent Pastures Amended with Nitrogen Fertilizer or Dung. Biology and Fertility of Soils, 30: 288-293.

Hoffman, G. and Dedekan, M. 1965. Eine Methode zur kolorimetrischen Bestimmung der ß-Glucosidaseaktivität in Böden. Z Pflanzenernaehr Düng Bodenkd, 108: 195-201.

Irmak Yilmaz, F., 2020. Seasonal changes of some microbiological properties of soils in a field of hazelnut (Corylus avellana L.) growing. Applied Ecology and Environmental Research, 18(1): 253-262.

Jackson, M.L. 1967. Soil Chemical Analysis, Prentice Hall of India Private Limited, New Delhi.

Jenkinson, D.S. 1976. The Effects of Biocidal Treatments on Metabolism in Soil. IV. The Decomposition of Fumigated Organisms in Soil. Soil Biology and Biochemistry, 8: 203-208.

Jenkinson, D.S. 1988. Determination of Microbial Biomass Carbon and Nitrogen in Soil. In: Advances in Nitrogen Cycling in Agricultural Ecosystems (Ed J.R. Wilson). CAB International, Wallingford pp. 368-386.

Jenkinson, D.S. and Ladd, J.N. 1981. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry, Vol. 5. E.A. Paul and J.N. Ladd (eds.). Marcel Dekker, New York, pp. 415-471.

Johnson, L.F., Curl, E.A., Bond, J.H. and Fribourg, H.A. 1959. In: Methods for Studying Soil Microflora - Plant Disease Relationships. Burgess Pub Co Minn. USA. pp. 87-89.

Kablan, N. 2005. Farklı organik atıkların toprak ve mısır (Zea mays indendata) bitkisinin rizosfer bölgesindeki biyolojik özellikler üzerine etkisi. T.C. Ondokuz Mayıs Üniv. Fen Bil. Ens. Yüksek Lisans Tezi, Samsun.

Kacar, B. ve İnal, A. 2008. Bitki Analizleri. Nobel Yayın Dağıtım, Ankara, S. 892.

Kalembasa, S.J. and Jenkinson, D.S. 1973. A Comparative Study of Titrimetric and Gravimetric Methods for the Determination of Organic Carbon in Soil. Journal of the Science of Food and Agriculture, 24: 1085-1090.

Kandeler, E. and Gerber, H. 1988. Short-term Assay of Soil Urease Activity Using Colorimetric Determination of Ammonium. Biology and Fertility of Soils, 6: 68-72.

Kara, E.E. 2000. Effects of Some Plant residues on Nitrogen Mineralization and Biological Activity in Soils. Turkish Journal of Agriculture and Forestry, 24: 457-460.

Kautz, T., Wirth, S. and Ellmer, F. 2004. Microbial Activity in a Sandy arable Soil is Governed by the Fertilization Regime. European Journal of Soil Biology, 40(2): 87-94.

Kayıkçıoğlu, H.H., 2009. Tütün Atığının Bazı Organik Materyallerle Birlikte Kompostlaştırılma Süreci ve Bu Kompostların Topraktaki Mikrobiyal Biyomas ve Aktivite ile Bitki Gelişimi Üzerine Etkisi. Doktora Tezi. EÜ Fen Bilimleri Enstitüsü Toprak Anabilim Dalı. 12 Ekim 2009, Bornova, İzmir. 238 s.

Kayikcioglu, H.H., Yener, H., Ongun, A.R., Okur, B., 2019. Evaluation of soil and plant health associated with successive three-year sewage sludge field applications under semi-arid biodegradation condition. Archives of Agronomy and Soil Science, 65(12): 1659-1676.

Kayikçioglu, H.H. and Okur, N. 2011. Evolution of Enzyme Activities During Composting of Tobacco Waste. Waste Management & Research, 29(11): 1124-1133.

Kızılkaya, R., Ekberli, İ. ve Kars, N. 1997. Tütün Atığı ve Buğday Samanı Uygulanmış Toprakta Üreaz Aktivitesi ve Kinetiği. A.Ü. Ziraat Fakültesi Tarım Bilimleri Dergisi 13(3): 186-194.

Ladd, J.N. and Butler, J.H.A. 1972. Short-term Assay of Soil Proteolytic Enzyme Activities Using Proteins and Dipeptide Derivates as Substrates. Soil Biology and Biochemistry, 4: 19-39.

Majumder, B., Mandal, B., Bandyopadhyay, P.K. and Chaudhuri, J. 2007. Soil Organic Carbon Pools and Productivity Relationships For a 34 Year Old Rice-Wheat-Jute Agroecosystem under Different Fertilizer Treatments. Plant and Soil, 297: 53-67.

Malý, S., Královec, J. and Hampel, D. 2009. Effects of Long-term Mineral fertilization on Microbial Biomass, Microbial Activity, and the Presence of R- and K-Strategists in Soil. Biology and Fertility of Soils, 45:753-760.

Martens, D.A. 2000. Plant Residue Biochemistry Regulates Soil Carbon Cycling and Carbon Sequestration. Soil Biology and Biochemistry, 32: 361-369.

Melchias, G., Saravanan, P., Kumar, S.S. and Elizbeth, M. 2013. Effect of Tobacco Dust on Enhanced Productivity of Tomato Plant. International Journal of Pharmacy & Life Sciences, 4(4): 2605-2607.

Melero, S., Ruiz Porras, J.C., Herencia, J.F. and Madejon, E. 2006. Chemical and Biochemical Properties in a Silty Loam Soil under Conventional and Organic Management. Soil and Tillage Research, 90(1-2): 162-170.

Okur, N., Kayıkçıoğlu, H.H., Okur, B. and Delibacak, S. 2008. Organic Amendment Based on Tobacco Waste Compost and Farmyard Manure: Influence on Soil Biological Properties and Butter-Head Lettuce Yield. Turkish Journal of Agriculture and Forestry, 32: 91-99.

Olsen, S.R. and Sommers, L.E. 1982. Phosphorous. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. A.L. Page, R.H. Miller, D.R. Keeney (eds). 2nd Edt. Agronomy No.9/2. Am. Soc. Agron. Soil Science Soc. America, Madison, Wisconsin, USA, pp. 403-430.

Pascual, J.A., Garcia, C., Hérnandez, T. and Ayuso, M. 1997. Changes in the Microbial Activity of an Arid Soil Amended With Urban Organic Wastes. Biology and Fertility of Soils. 24: 429-434.

Piotrowska-Cyplik, A., Olejnik, A., Cyplik, P., Dach, J. and Czarnecki, Z. 2009. The Kinetics of Nicotine Degradation, Enzyme Activities and Genotoxic Potential in the Characterization of Tobacco Waste Composting. Bioresource Technology, 100(21): 5037-5044.

Pratt, P.F. 1965. Methods of soil analysis, Part 2, Chemical and microbiological properties. In Ed. C.A. Black, American Society of Agronomy, Inc. Pub. Agron. Series, No. 9., Madison, Wisconsin, U.S.A.

Pruden, G., Kalembasa, S.J. and Jenkinson D.S. 1985. Reduction of Nitrate Prior to Kjeldahl Digestion. Journal of The Science of Food and Agriculture, 36: 71-73.

Rauterberg, E. und Kremkus, F. 1951. Bestimmung von Gesamt Humus und Alkalischen Humusstoffen in Boden. Z. für Pflanzenernaehrung, Düngung und Bodenkunde, Verlag Chemie, GmbH, Weinheim.

Reddy, D.D., Rao, S.A. and Singh, M. 2005. Changes in P Fractions and Sorption in an Alfisol Following Crop Residues Application. Journal of Plant Nutrition and Soil Science, 168(2): 241-247.

Shakeel, S. 2014. Consideration of Tobacco Dust as Organic Amendment for Soil: A Soil & Waste Management Strategy. Earth Sciences, 3(5): 117-121.

Silva, C.P., Almeida, B.P.M. De, Campos, S.X. de 2019. Monitoring and Characterization of Compost Obtained of Sludge of Ultra-processed Food Industry by Conventional and Spectroscopic Analyses. Semin. Ciências Exatas eTecnológicas, 40: 39-46.

Sözmez, İ. 2017. Atık Mantar Kompostunun Domates Fidelerinin Gelişimi ve Besin İçerikleri Üzerine Olan Etkilerinin Belirlenmesi. Mediterranean Agricultural Sciences, 30(1): 59-63.

Tabatabai, M.A. and Bremner, J.M. 1969. Use of P-nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biology and Biochemistry, 1: 301-307.

Tabatabai, M.A. and Bremner, J.M. 1970. Arylsulfatase Activity of Soils. Soil Science Society of America Journal, 34: 225-229.

TADB, 2020. Tütün ve Alkol Dairesi Başkanlığı, Tütün ve Tütün Mamülleri Daire Başkanlığı https://www.tarimorman.gov.tr/TADB/Menu/22/Tutun-Ve-Tutun-Mamulleri-Daire-Baskanligi. Erişim: Nisan 2020.

Talkah, A., 2013. The cigarette factory waste vermicompost effect of cucumis melol. International Journal of Advances in Engineering & Technology, 6(5): 1942-1947.

Thalmann, A. 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden Mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch, 21: 249-258.

Trolldenier, G. 1996. Nitrifiers by MPN Method. Methods in Soil Biology. Eds: Schinner, F., Öhlinger, R., Kandeler, E. and Margesin, R., Springer-Verlag Berlin Heidelberg New York. pp 32-36.

TSKAE. 2009. Menemen 2008 Hidrometerolojik Rasat Verileri Yıllığı. Menemen Toprak ve Su Kaynakları Araştırma Enstitüsü Müdürlüğü Yayınları. Genel Yayın No: 237. Teknik Yayın No: 47 Menemen- İzmir.

U.S. Soil Survey Staff. 1951. Soil Survey Manuel. U.S. Dept. Agr. Handbook 18. U.S. Govt. Printing Office. Washington D.C. USA.

Vance, E.D., Brookes, P.C. and Jenkinson, D.S. 1987. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biology and Biochemistry, 19: 703-707.

Wittmann, C., Kähkönen, M.A., Ilvesniemi, H., Kurola, J. and Salkinoja-Salonen, M.S. 2004. Areal Activities and Stratification of Hydrolytic Enzymes Involved in the Biochemical Cycles of Carbon, Nitrogen, Sulphur and Phosphorus in Podsolized Boreal Forest Soils. Soil Biology and Biochemistry. 36: 425-433.

Wu, W., Mei, Y., Zhang, L., Liu, R., Cai, J. 2015. Kinetics and Reaction Chemistry of Pyrolysis and Combustion of Tobacco Waste. Fuel, 156: 71-80.

Zaman, M., Cameron, K.C., Di, H.J. and Inubushi, K. 2002. Changes in Mineral N, Microbial Biomass and Enzyme Activities in Different Soil Depths after Surface Applications of Dairy Shed Effluent and Chemical Fertilizer. Nutrient Cycling in Agroecosystems, 63(2-3): 275-290.

Zuberer, D.A. 1998. Biological Dinitrogen Fixation: Introduction and Nonsymbiotic. In D.M. Sylvia et al. (ed.) Principles and Application of Soil Microbiology. Prentice Hall, Upper Saddle River, NJ. pp. 295-321.

Published

2020-06-01

How to Cite

Hüseyin Hüsnü KAYIKÇIOĞLU, & Nur OKUR. (2020). Effects of Tobacco Waste and Its Compost on The Health of a Typic Xerofluvent Soil and The Yield of Paprika (Capsicum annuum L.). ISPEC Journal of Agricultural Sciences, 4(2), 319-345. https://doi.org/10.46291/ISPECJASvol4iss2pp184-210

Issue

Section

Articles