Determination of The Effects of Different Doses of Wheat Straw and Urea Fertilizer on Soil and Wheat Plant (Triticum aestivum L.)


Abstract views: 228 / PDF downloads: 120

Authors

DOI:

https://doi.org/10.5281/zenodo.7041781

Keywords:

Bread wheat, straw, urea, soil analysis, plant analysis

Abstract

In the research, different doses of urea (6, 12, 18 kg/da) and wheat straw applications (300 kg da-1 straw+6 kg da-1 urea, 300 kg da-1 straw+12 kg da-1 urea, 300 kg da-1 sap+18 kg da-1 urea, 600 kg da-1 sap+6 kg da-1 urea, 600 kg da-1 sap+12 kg da-1 urea, 600 kg da-1 sap+18 kg da-1 urea, 900 kg da-1 sap+6 kg da-1 urea, 900 kg da-1 straw+12 kg da-1 urea, 900 kg da-1 straw+18 kg da-1 urea) and control (without any fertilizer) were applied. In the study, Ceyhan-99 bread wheat variety was used a material with three replications. According to the results obtained from study, while the amount of nutrients in the soil increased depending on the amount of straw, there was a decrease in the amount of pH. On the other hand, while the nitrogen and protein percentages in the wheat grains increased in parallel with the increase in the amount of straw.  The nutritional enrichment of the soil with straw and urea provided the first vegetative part and then the generative parts to increase the protein in the grain. According to this situation, not burning the straw, mixing it with the soil with the addition of fertilizer, especially at low doses, will contribute to the nutritional enrichment of the grain and the improvement of some soil properties.

References

Abera, G., Wolde-Meskel, E., Bakken, L.R. 2012. Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biol Fertil Soils, 48:51-66.

Agegnehu, G., Ghizaw, A., Sinebo, W. 2006. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur. J. Agron., 25: 202-207.

Auge, K.D., Assefa, T.M., Woldeyohannes, W.H., Asfaw, B.T. 2017. Potassium forms of soils under enset farming systems and their relationships with some soil selected physicochemical properties in Sidama zone. Southern Ethiopia, African Journal of Agricultural Research, 12(52): 3585-3594.

Bouranis, D.L., Vlyssides, A.G., Drossopoulos, J.B., Karvouni, G. 1995. Some characteristics of a new organic soil conditioner from the co-composting of olive oil processing wastewater and solid residue. commun. Soil Sci. Plant Anal. 26 (15&16): 2461-2472.

Bremner, J.M. 1996. Nitrogen Total. In D.L. Sparks (Eds) Methods of Soil Analysis, Part 3, Chemical Methods, SSSA Book Series Number 5, SSSA., Madison,WI, s. 1085-1112.

Christensen, B. 1986. Straw incorporation and soil organic matter in macro-aggregates and particle size separates. European Journal of Soil Sci., 37: 125-135.

Çokkızgın, A., Girgel, U., Kara, Z., Colkesen, M., Saltali, K., Yururdurmaz, C. 2022. The effect of organic fertilizers on the yield components of corn plant, protein and starch content of grain. Harran Tarım ve Gıda Bilimleri Derg., 26(2): 133-142.

Çokkızgın, A., Çölkesen, M., İdikut, L., Özsisli, B., Girgel, Ü. 2012. Çevre koşullarının fasulye çeşitlerinde (phaseolus vulgaris L.) kalite özellikleri üzerine etkisi. 9. Ulusal Sebze Tarımı Sempozyumu, 12-14 Eylül, Konya, 109-115.

Eyüpoğlu, F. 1999. Türkiye topraklarının verimlilik durumu. T.C. Başbakanlık Köy Hizmetleri Genel Müd. Toprak ve Gübre Araştırma Enstitüsü Yayınları. Genel Yayın No: 220, Teknik yayın No: T-67, Ankara, s.122.

FAO, 1990. Micronutrient, Assessment at the country level: an International study. FAO Soil Bulletin by Sillanpaa, Rome.

Güçdemir, İ.H. 2006. Türkiye gübre ve gübreleme rehberi, 5. Baskı. Tarım ve Köyişleri Bakanlığı, Tagem, Toprak ve Gübre Arş. Ens. Müd., G. Yayın No:231, Teknik Yayın No:T. 69, Ankara.

Hansen, E.M., Munkholm, L.J., Melander, B., Olesen, J.E. 2010. Can non-inversion tillage and straw retainment reduce N leaching in cereal-based crop rotations. Soil Tillage Res, 109: 1-8.

Hansen, V., Müller-Stöver, D., Imparato, V., Krogh, P.H., Jensen, L.S., Dolmer, A., Hauggaard-Nielsen, H. 2017. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study. Environ. Manag., 186: 88-95.

He, Y.Q., Zhu, Y.G., Smith, S.E., Smith, F.A. 2002. Interactions between soil moisture and phosphorus supply in spring wheat plants grown in pot culture. Journal of Plant Nutrition, 25: 913-925.

JMP. 2007. JMP User Guide 7.0v, SAS Institute Inc., Cary, NC, USA, ISBN 978-1-59994-408-1.

Kaçar, B. 1994. Bitki ve toprağın kimyasal analizleri: III. Toprak Analizleri. A.Ü. Ziraat Fak. Eğitim Araştırma ve Geliştirme Vakfı Yayınları, Ankara, 705.

Kara, Z., Aydemir, S., Saltalı, K. 2022. Rehabilitation of light textured soils with olive pomace application. MAS Journal of Applied Sciences, 7(2): 316-325.

Kara, Z., Yürürdurmaz, C., Cokkızgın, A., Keles, H., Gonen, E. 2021. The effects of wheat straw used as mulch on some chemical properties of the soil and grain yield in durum wheat. Elixir Agriculture 154: 55382-55386.

Kmik, 2018. K.Maraş Meteoroloji İl Müdürlüğü, K.Maraş Meteoroloji İstasyonu Verileri, 2012-2017. Kahramanmaraş. Douglas, J.T., M.J.

Kumar, K., Goh, K.M. 2000. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun Soil Sci Plant Anal 34: 2441-2460.

Kuo, S. 1996. Phosphorus in D.L. Sparks (Ed) Methods of Soil Analysis, Part 3, Chemical Methods, SSSA Book Series Number 5, SSSA., Madison, WI, 869-921.

Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1629.

Lefroy, R., Chaitep, W., Blair, G. 1994. Release of sulfur from rice residues under flooded and non-flooded soil conditions. Aust J Agric Res 45: 657-667.

Mandal, K.G., Misra, A.K., Hati, K.M., Bandyopadhyay, K.K., Ghosh, P.K., Mohanty, M. 2004. Rice residue-management options and effects on soil properties and crop production. J Food Agric Environ 2: 224-231.

Martens, D.A., Johanson, J.B., Frankenberger, W.T., Jr. 1992. Production and persistence of soil enzymes. With repeated additions of organic residues. Soil Science 153: 53-61.

Nan, Q., Wang, C.. Wang, H., Yi, Q., Liang, B., Xu, J., Wu, W. 2020. Biochar drives microbially-mediated rice production by increasing soil carbon. Hazard. Mater., 387: 121680.

Nigussie, A., Kissi, E. 2011. Impact of biomass burning on selected physicochemical properties of nitisol in Jimma zone, Southwestern Ethiopia. Int Res J Agric Sci Soil Sci 1: 394-401.

Nye, P.H., Tinker, P.B. 1977. Solute movement in the soil-root system. Blackwell, Oxford.

Özdemir, N., 1993. Toprağa karıştırılan organik artıkların toprağın bazı özellikleri ile strüktürel dayanıklılığı ve erozyona duyarlılığı üzerine etkileri. Atatürk Üni. Zir. Fak. Der. 24(1): 75-90.

Palm, C.A., Gachengo, C.N., Delve, R.J., Cadisch, G., Giller, K.E. 2001. Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27-42.

Ponnamperuma, F. 1984. Straw as a source of nutrients for wetland rice. Org Matter Rice 117:136.

Raison, R.J. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73-108.

Sağlam, T. 2008. Toprak Kimyası. Namık Kemal Üni. Zir. Fak. Yayın No:1, S 94, Tekirdağ.

Saltalı, K., Kara, Z. 2022. Effects of gyttja applications on some chemical properties of acidic soils. KSU J. Agric Nat 25 (2): 374-379.

Solomou, A.D., Skoufogianni, E., Bartzialis, D., Charvalas, G., Danalatos, N.G. 2019. Dynamics and environmental determinants of herbaceous plants in organic cultivation of an aromatic and medicinal plant in the Mediterranean climate. Proceedings of the Seventh International Conference on Environmental Management, Engineering, Planning and Economics (Cemepe 2019) and Secotox Conference. May 19-24, Mykonos Island, Greece, ISBN: 978-618-5271-73-2.

Sparks, D.L. 1996. Methods of Soil Analysis, Part 3, Chemical Methods. SSSA, Madison, Wisconsin, USA

SPSS, 2022. IBM SPSS Statistics 28 Brief Guide, 84p.

Şeker, C., Ersoy, İ. 2005. Değişik organik gübreler ve leonarditin toprak özellikleri ve mısır bitkisinin (zea mays l.) gelişimi üzerine etkileri. S.Ü. Ziraat Fakültesi Dergisi 19 (35): 46-50.

Tang, C., Sparling, G.P., McLay, C.D.A., Raphael, C. 1999. Effect of shortterm legume residue decomposition on soil acidity. Aust J Soil Res 37: 561-573.

Tepecik, M., Barlas, N.T., İlker, E. 2014. Farklı azotlu gübreler ve uygulama zamanlarının buğdayda verim ve verim komponentlerine etkileri. Toprak Su Dergisi, Toprak Su Dergisi, 3(1):24-30.

Thomas, G.W. 1996. Soil pH and Acidity. (Methods of Soil Analysis: Chemical Methods. Part 3. Madison, WI., USA: Ed. Sparks, D.L.) 475-491.

Tirol-Padre, A., Tsuchiya, K., Inubushi, K., Ladha, J.K. 2005. Enhancing soil quality through residue management in a rice-wheat system in Fukuoka, Japan. Soil Sci Plant Nutr 51:849-860.

Tüzüner, A. 1990. Toprak ve su analiz laboratuvarları el kitabı. Tarım Orman ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara

Ustuner, T., Girgel, U., Çokkızgın, A. 2020. Phenological and physiologycal effects of different broomrape (Orobanche spp.) on chickpea cultivars (Cicer arietinum L.) in vitro and in vivo conditions. Fresenius Environmental Bulletin, 29(8): 6597-6601.

Xu, R.K., Coventry, D.R. 2003. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant Soil 250: 113–119.

Yadvinder, S., Gupta, R.K., Jagmohan, S., Gurpreet, S., Gobinder, S., Ladha, J.K. 2010. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice-wheat system in Northwestern India. Nutr Cycl Agroecosyst 88: 471-480.

Yadvinder-Singh, B.S., Ladha, J.K., Khind, C.S., Khera, T.S., Bueno, C.S. 2004. Effects of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci Soc Am J, 68: 854-858.

Yan, F., Schubert, S. 2000. Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant Soil 220: 279-287.

Yan, C., Yan, S.S., Jia, T.Y., Dong, S.K., Gong, Z.P. 2019. Decomposition characteristics of rice straw returned to the soil in northeast China. Nutr. Cycl. Agroecosyst., 114: 211-224.

Yan, F.J., Sun, Y.J., Hui, X., Jiang, M.J., Xiang, K.H., Wu, Y.X., Zhang, Q., Tang, Y., Yang, Z.Y., Sun, Y.Y. 2019. The effect of straw mulch on nitrogen, phosphorus and potassium uptake and use in hybrid rice. Paddy Water Environ., 17: 23-33.

Published

2022-09-07

How to Cite

KARA, Z., YÜRÜRDURMAZ, C. ., ÇOKKIZGIN, A. ., & KESKİNER, A. D. . (2022). Determination of The Effects of Different Doses of Wheat Straw and Urea Fertilizer on Soil and Wheat Plant (Triticum aestivum L.). ISPEC Journal of Agricultural Sciences, 6(3), 610–619. https://doi.org/10.5281/zenodo.7041781

Issue

Section

Articles