Investigation of The Effect Of Salt Application on Physiological and Biochemical Properties in Soy (Glycine max. L. Merill)


Abstract views: 173 / PDF downloads: 116

Authors

DOI:

https://doi.org/10.5281/zenodo.7336978

Keywords:

Soybean (Glycine max. L. Merill), salt (NaCI) stress, salt tolerance, plant growth

Abstract

Salt stress is one of the important abiotic stress factors affecting crop productivity, especially in arid and semi-arid regions, by affecting the growth of plants. These negative effects of salt stress, which affects growth and development in plants; It varies depending on the amount of salt, the level and duration of stress, the genotype of the plant exposed to stress and the developmental stage. The aim of this study is to examine the effects of salt stress on physiological and biochemical properties of soybean (Glycine max L. Merill). In this study, vegetative growth and salt tolerance of different soybean varieties (Umut2002, Cinsoy, İlksoy and Traksoy) under controlled conditions at different salt concentrations (control, 25, 50, 75, 100 mM NaCl) under salt stress were studied. In the study, post-application SPAD, harvest period SPAD, plant height (cm), number of leaves (piece), stem diameter (mm), root diameter (mm), root length (cm), plant fresh weight (g) and plant dry weight ( It is seen that the investigated properties such as g) are negatively and significantly affected by salt application. % Na, % Cl, % salt (g/100 g sample) contents were significantly and positively affected by the applications.

References

Abel, G.H., MacKenzie, A.J. 1964. Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci. 4(2): 157–161.

An, P., Inanaga, S., Cohen, Y., Kafkafi, U., Sugimoto, Y. 2002. Salt tolerance in two soybean cultivars, Journal of Plant Nutrition, 25(3): 407-423.

Ayyıldız, M. 1990. Sulama suyu kalitesi ve tuzluluk problemleri. Ankara Üniversitesi, Ziraat Fakültesi Yayınları: 1196, Ders Kitabı: 344, s.1–282, Ankara.

Bahçeci, I. 1995. Tarla fasulyesinde tuz-su ve verim ilişkilerinin irdelenmesi. Ç.Ü. Fen Bilimleri Enst., Doktora Tezi, Adana.

Cemeroğlu, B. 1992. Meyve ve sebze işleme endüstrisinde temel analiz metodları. Biltav Yayınları, Üniversite Kitapları Serisi. No: 02-2. Arsa. Ofset. s. 381. Ankara.

Chang, R.Z., Chen, Y.W., Shao, G.H., Wan, C.W. 1994. Effect of salt stress on agronomic characters and chemical quality of seeds in soybean. Soybean Science. 13: 101-105.

Cuartero, J., Fernandez-Munoz, R. 1999. Tomato and salinity, Scientia Horticulturae. 78: 83-125.

Çulha, Ş., Çakırlar, H. 2011. Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi. 11: 11-34.

Dajic, Z. 2006. Salt stress: (Ed: K.V. Madhavarao), Physiology and Molecular Biology of Stress Tolerance in Plants, Springer, The Netherlands, 41-100.

Dizdar, M.Y. 1978. Türkiye’de tuzdan etkilenmiş topraklar. Toprak Su Dergisi, 47:36-57.

Doğru, A. 2014. Farklı mısır genotiplerinde tuz stresinin antioksidant sistem üzerindeki etkileri. 22. Ulusal Biyoloji Kongresi 23-27 Haziran, Osmangazi Üniversitesi, Eskişehir, 430.

Essa, T.A. 2002. Effects of salinity stres on growth and nutrient composition of the soybean (Glycine max L. Merril) cultivars. Journal of agronomy and crop science, 188(2): 86-93.

Güngör, Y., Yurtseven, E. 1991. Değişik tuzluluk düzeylerinde sulama sularının soya fasulyesi verimine etkisi. Journal of Agriculture and Forestry. 15: 80-88.

Hamayun, M., Khan, S.A., Khan, A.L., Shinwari, Z.K., Hussain, J., Sohn, E.Y., Lee, I.J. 2010. Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pakistan Journal Botany, 42(5): 3103-3112.

Hu, Y., Schmidhalter, U. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants, Journal of Plant Nutrient and Soil Science, 168(4): 541-549.

Hu, J.P. 2007. Toward understanding plant peroxisome proliferation, Plant Signal Behav. 2(4): 308-310.

Jolliffe, I.T. 2002. Principal component analysis for special types of data. s. 338-372. Springer New York.

Joshi, S.S. 1984. Effect of salinity stress on organic and mineral constituents in the leaves of Pigeonpea (Cajanus cajan L. var. C-11), Plant and Soil, 82: 69-76.

Kao, W.Y., Tsai, T.T., Tsai, H.C., Shih, C.N. 2006. Response of three Glycine species to salt stress. Environmental and Experimental Botany. 56: 120– 125.

Kurban, H., Saneoka, H., Nehira, K., Adilla, R., Premachandra, G.S., Fujita, K. 1999. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.), Soil Science and Plant Nutrition, 45(4): 851-862.

Mohammad, M., Shibli, R., Ajlouni, M., Nimri, L. 1998. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. Journal of Plant Nutrition. 21(8): 1667–1680.

Özçınar, A.B. 2021. Yağlı tohumlu bitkilerin tuzluluğa toleransı: Kalkınma Odaklı Doğal Kaynak Temelli İnovasyon (Ed: F. Döndü Bilgin), İksad publishing House. Ankara, 27-46.

Parida, A.K., Das, A.B., Mohanty, P. 2004. Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes, Plant Growth Regulation. 42(3): 213-226.

Parida, A.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60(3): 324-349.

Perez Alfocea, F., Balibrea, M.E., Santa Cruz, A., Estan, M.T. 1996. Agronomical and phsiological Characterization of Salinity Tolerance in a Commercial Tomato Hybrid. Plant and Soil, 180(2): 251-257.

Phang T.H., Shao, G., Lam, H.M. 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10): 1196-1212.

Reddy, M.P., Iyengar, E.R.R. 1999. Crop responses to salt stress: seawater application and prospects (Ed: M. Pessarakli), Handbook of Plant Crop Stress, New York, 1198.

Richards, L.A. 1954. Diognosis and Improvement of Saline and Alkali Soils. U.S. Agrıculture Hendook, No: 60: 159.

Sarıoğlu, A., Kaya, C. 2021. Tuz stresi ve bor toksisitesi koşulları altında yetişen soya bitkisine yapılan bakteri ve melatonin uygulamasının toprak mikrobiyal aktivitesine etkisi. Harran Tarım ve Gıda Bilimleri Dergisi. 25(3): 336-348.

Shannon, M.C., Gronwald, J., Tal, M. 1987. Effects of salinity on growth and accumulation of organic and inorganic ions in cultivated and wild tomato species, J. Ann. Soc. Hortic, Sci., 112(3): 416-423.

Shao, H.B., Chu, L.Y., Jaleel, C.A., Zhao, C.X. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3): 215-225.

Sorour, S., Amer, M.M., El Hag, D., Hasan, E.H., Awad, M., Kizilgeci, F., Özturk, F., Iqbal, M.A., El-Sabagh, A. 2021. Organıc amendments and nano-mıcronutrıents restore soıl physıco-chemıcal propertıes and boost wheat yıeld under salıne envıronment. Fresenius Environmental Bulletin, 30(9): 10941-10950.

Sönmez, B. 2003. Türkiye çoraklık kontrol rehberi. Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü, teknik yayın no: 33.

Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428: 419-438.

Yurtseven, E., Öztürk, H.S. 2001. Sulama suyu tuzluluğunun tınlı toprakta profil tuzluluğuna etkisi. Tarım Bilimleri Dergisi, 7(3): 1-8.

Zaimoğlu, S., Doğru, A. 2016. Farklı mısır genotiplerinde tuz stresinin bazı büyüme parametreleri ve fotosentetik aktivite üzerindeki etkileri, 23. Ulusal Biyoloji Kongresi 2016, Gaziantep Üniversitesi, Gaziantep, 270.

Published

2022-12-03

How to Cite

BİLMEZ ÖZÇINAR, A., ARSLAN, H. ., & ARSLAN, D. . (2022). Investigation of The Effect Of Salt Application on Physiological and Biochemical Properties in Soy (Glycine max. L. Merill). ISPEC Journal of Agricultural Sciences, 6(4), 762–776. https://doi.org/10.5281/zenodo.7336978

Issue

Section

Articles