The Effect of Plant Growth Promoting Bacteria on Some Plant Traits in Black Cumin (Nigella damascena L.)


Abstract views: 191 / PDF downloads: 107

Authors

DOI:

https://doi.org/10.5281/zenodo.8303783

Keywords:

Black cumin, Nigella damascena, plant seed yield, vegetative characteristics

Abstract

The objective of this study was to evaluate possible effects of control (without inoculation and any fertilizer application) chemical fertilizer, farmyard manure, one plant growth regulators (IAA), two commercial liquid bio-fertilizer (BMusaVita and BMusaGreen) and IAA-producing, ACC deaminase-containing, N2-fixing, and P-solubilizing bacteria based bio-fertilizers in six single, one dual, four triple, and two quadruple combinations plant height, number of branches, total number of capsules, number of seeds in capsule , seed weight in capsule, plant grain yield of Nigella damascena black cumin genotype under field conditions of Burhaniye/Balıkesir, in two years. The experiments were arranged to completely randomized block design with nineteen treatments and three replicates. BMusaVita, BMusaGreen, RC512 and RC481 applications had values above the general average of each feature in all of the examined features.In the biplot analysis, the number of seeds in the capsule and the weight of the seeds in the capsule formed a group, while plant height, plant seed yield, number of branches and number of capsules formed a second group. RC502, chemical fertilizer, RC481, BMusaGreen, BMusaVita and RC481+RC210+RC32+RC502 applications are diagonally separated from other applications in the sections where the examined features are included. In the biplot created to determine the best practice, RC481, BMusaGreen and BMusaVita applications were located closest to the ideal application area, followed by RC512, RC210, RC536+RC542+RC65+RC502 and chemical fertilizer applications. From these applications, it can be evaluated that RC481 application has the potential to be used as a biological fertilizer in black seed cultivation as an alternative to chemical fertilizer.

References

Andrade, G., Mihara, K.L., Linderman, R.G., Bethlenfalvay, G.J., 1997. Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil, 192: 71–79.

Anonim, 1999. SAS/STAT Yazılımı, 9.00. SAS Inst. Cary, N.C, USA.

Anonim, 2014. SAS JMP Yazılımı, 11. versiyonu SAS Inst. Cary, N.C, USA.

Aysabar, Z., Gedik, O., 2022. Kahramanmaraş koşullarında çörek otu (Nigella sp.) genotiplerinde farklı sıra arası mesafelerin verim ve kaliteye etkilerinin Belirlenmesi. International Journal of Pure and Applied Sciences, 8(1): 81-90.

Badalamenti, N., Modica, A., Bazan, G., Marino, P., Bruno, M., 2022. The ethnobotany, phytochemistry, and biological properties of Nigella damascena–A review. Phytochemistry, 198: 113165.

Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., El Enshasy, H., 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3):1140-1160.

Baytöre, F., 2011. Bazı Çörek otu (Nigella sativa L.) Populasyonlarının Verim ve Verim Kriterlerinin Belirlenmesi. Yüksek Lisans Tezi. Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Tekirdağ.

Bhardwaj, D., Ansari, M.W., Sahoo, R.K., Tuteja, N., 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13: 1-10.

Borkar, S.G., 2015. Microbes as Bio-Fertilizers and Their Production Technology (1st ed). WPI Publishing: New York, NY, USA.

Çakmakçı, R., 2019. The variability of the predominant culturable Plant Growth-Promoting Rhizobacterial diversity in the acidic tea rhizosphere soils in the Eastern Black Sea Region. Alinteri Journal of Agriculture Sciences, 34(2): 175-181.

Çakmakçı, R., Dönmez, F., Aydın, A., Şahin, F., 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology & Biochemistry, 38(6): 1482-1487.

Çakmakçı, R., Erat, M., Erdoğan, Ü., Dönmez, M.F., 2007. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170: 288–295.

Çakmakçı, R., Erdoğan, Ü., Kotan, R., Oral, B., Dönmez, F., 2008. Çoruh vadisinde yabani ahududu rizosfer topraklarında heterotrof azot fikseri bakteri çeşitliliği. 4. Ulusal Bitki Besleme ve Gübre Kongresi, Kongre Bildiriler Kitabı, 8-10 Ekim, Konya, s. 706-717.

Çakmakçı, R., Erat, M., Oral, B., Erdogan, Ü., Şahin, F., 2009. Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. Journal of Horticultural Science & Biotechnology, 84(4): 375-380.

Çakmakçı, R., Dönmez, M. F., Ertürk, Y., Erat, M., Haznedar, A., Sekban, R., 2010. Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant and Soil, 332: 299–318.

Çakmakçı, R., Ertürk, Y., Sekban, R., Haznedar, A., Varmazyari, A., 2013. The effect of single and mixed cultures of plant growth promoting bacteria and mineral fertilizers on tea (Camellia sinensis) growth, yield and nutrient uptake. 1st Central Asia Congres on Modern Agricultural Tecniques and Plant Nutrition. 01-03 October, 2013, Soil Water Journal, Secial Issue for Agricasia, 2(1): 653-662.

Çakmakçı, R., Ertürk, Y., Atasever, A., Kotan, R., Erat, M., Varmazyari, A., Türkyılmaz, K., Haznedar; A., Sekban, R., 2014. Development of plant growth-promoting bacterial based bioformulations using solid and liquid carriers and evaluation of their influence on growth parameters of tea. 9th International Soil Science Congress on the Soul of the Soil and Civilization, Conference Proceedings Book, 14-16 October, Side, pp.801-808.

Çakmakçı, R., Kotan, R., Atasever, A., Erat, M., Türkyılmaz, K., Sekban, R., Haznedar, 2017. Çayda besin alımı, gelişme, enzim aktivitesi ve verimim artırılması için farklı bitki büyümesini teşvik edici bakterilerin birlikte aşılamasının etkinliği. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 26 (1): 86−91.

Çakmakçı, R., Mosber, G., Milton, A.H., Alatürk, F., Ali, B., 2020. The effect of auxin and auxin‑producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Current Microbiology, 77(4): 564–577.

Day, S., Abay, G., Özgen, Y., Önol, B., 2023. Effect of sulphur treatments on growth parameters and oil yield of black cumin (Nigella sativa L.). Gesunde Pflanzen, 75: 1355-1360.

Ertuğrul, Y., 1986. Çörek otunda (N. damescena L.) farklı ekim zamanlarının verim ve kaliteye etkisi üzerine bir araştırma. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.

Faravani, M., Koorepaz, S., Gholami, B.A., Zare, Y., 2012. Biological effects of fertilizer treatments on growth, yield and yield components of black cumin. Herba Polonica, 58(4): 15-28.

Fico, G., Braca, A., Tomè, F., Morelli, I.A., 2001. New phenolic compound from Nigella damascena seeds. Fitoterapia, 72: 462–463.

Harish, S., Kavino, M., Kumar, N., Balasubramanian, P., Samiyappan, R., 2009. Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control, 51(1): 16-25.

Heidari, M., Golpayegani, A., 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11(1): 57-61.

Helvacıoğlu, S., Charehsaz, M., Güzelmeriç, E., Oçkun, M.A., Ayran, I., Kırmızıbekmez, H., Kan, Y., Aydın, A., Yeşilada, E., 2021. Protective effect of Nigella sativa and Nigella damascena fixed oils against aflatoxin induced mutagenicity in the classical and modified ames test. Chemistry & Biodiversity 18: e2000936.

Itelima, J.U., Bang, W.J., Onyimba, I.A., Sila, M.D., Egbere, O.J., 2018. Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Direct Research Journal of Agriculture and Food Science, 6(3): 73-83.

Ilangumaran, G., Smith, D.L., 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Frontiers in Plant Science, 8: 1768-1782.

Kalçın, F.T., 2003. İki çörek otu türünde (Nigella sativa L., Nigella damascena L.) ekim sıklıklarının verim ve verim öğelerine etkisi. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

Keser, E., Gedik, O., 2021. Kahramanmaraş ekolojik koşullarında kışlık ve yazlık ekilen çörek otu (Nigella sp.) genotiplerinin tarımsal ve kalite özeliklerinin belirlenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 18(1): 73-81.

Khan, A., Khan, A.A., Irfan, M., 2023. Effects of different concentrations of nickel (Ni) on the vegetative and reproductive growth parameters of Nigella sativa L”. Gesunde Pflanzen, 75: 677-686.

Kılıç, C., Arabacı, O., 2016. Çörek otu (Nigella sativa L.)'nda farklı ekim zamanı ve tohumluk miktarının verim ve kaliteye etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 13(2): 49-56.

Kokoska, L., 2011. Chemistry and biological activity of Nigella Genus: The antimicrobial and anti-inflammatory effects of seed extracts, essential oils and compounds of six Nigella species; LAP LAMBERT Academic Publishing: Berlin, Germany.

Kumar, S.M., Reddy, C.G., Phogat, M., Korav, S., 2018. Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7(6): 1915-1921.

Margout, D., Kelly, M.T., Meunier, S., Auinger, D., Pelissier, Y., Larroque, M., 2013. Morphological, microscopic and chemical comparison between Nigella sativa L. cv (black cumin) and Nigella damascena L. cv. Journal of Food, Agriculture & Environment, 11(1): 165-171.

Mengistu, F.G., Wegayehu, G., Ali, D.F.A., Fufa, D.T.N., 2021. The influence of seed rate and inter-row spacing on seed yield and yield attributes of black cumin in Arsi Highlands, Ethiopia. Journal of Biology, Agriculture and Healthcare, 11(1): 33-39.

Niu, Y., Zhou, L., Meng, L., Chen, S., Ma, C., Liu, Z., Kang, W., 2020. Recent progress on chemical constituents and pharmacological effects of the genus Nigella. Evidence-Based Complementary and Alternative Medicine, 1-15.

Özdemirel, F., Kaçar, O., 2020. Bursa ekolojik koşullarında yetiştirilen farklı kökenli çörek otu (Nigella sativa L.) genotiplerinin tarımsal özelliklerinin ve sabit yağ oranlarının belirlenmesi. Bursa Uludag Üniviversitesi Ziraat Fakültesi Dergisi, 35(1): 13-31.

Özel, A., Demirbilek, T., Güler, İ., 2002. Harran Ovası kuru koşullarında farklı ekim zamanlarının çörek otu türleri (Nigella spp.)'nin verim ve bazı tarımsal karakterlerine etkisi. Harran Üniversitesi Ziraat Fakültesi Dergisi, 6(3-4): 81-90.

Salehi, B., Quispe, C., Imran, M., Ul-Haq, I., Živković, J., Abu-Reidah, I. M., Sharifi-Rad, J., 2021. Nigella plants–Traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Frontiers in Pharmacology, 12: 625386 1-26.

Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., Mathimaran, N., 2018. Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science, 8: 2204 1-13.

Singh, J.S., Pandey, V.C., Singh, D.P., 2011. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3-4): 339-353.

Sun, B., Bai, Z., Bao, L., Xue, L., Zhang, S., Wei, Y., Zhuang, X., 2020. Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environment International, 144: 105989.

Thilakarathna, R.C.N., Madhusankha, G.D.M.P., Navaratne, S.B., 2018. Morphological characteristics of black cumin (Nigella sativa) seeds”. Chemistry Research Journal, 3(3): 40-45.

Toma, C.C., Olah, N.K., Vlase, L., Mogoșan, C., Mocan, A. (2015). Comparative studies on polyphenolic composition, antioxidant and diuretic effects of Nigella sativa L. (black cumin) and Nigella damascena L.(lady-in-a-mist) seeds. Molecules, 20(6): 9560-9574.

Tonçer, O., Kızıl, S., 2004. Effect of seed rate on agronomic and technologic characters of Nigella sativa L. International Journal of Agriculture and Biology, 6(3): 529-532.

Ulusu, F., Şahin, A., 2021. Investigation on the effects of different concentrations of some fertilizers on yield, quality and essential and fixed oil composition of Nigella damascena. Romanian Biotechnological Letters, 26(3): 2722-2735.

Woitke, M., Schitzler, W.H., 2004. Biotic stress relief on plants in hydroponic systems. In International Symposium on Soilless Culture and Hydroponics, Conference Proceedings Book, 14-19 November, Almeria, Spain, pp. 557-565.

Yan, W., 2014. Crop Variety Trials: Data Management and Analysis. John Wiley & Sons.

Yasmin, F., Othman, R., Saad, M.S., Sijam, K., 2007. Screening for beneficial properties of rhizobacteria isolated from sweetpotato rhizosphere. Biotechnology, 6: 49–52.

Yimam, E., Nebiyu, A., Mohammed, A., Getachew, M., 2015. Effect of nitrogen and phosphorus fertilizers on growth, yield and yield components of black cumin (Nigella sativa L.) at Konta District, South West Ethiopia. Journal of Agronomy, 14(3): 112-120.

Zandi, P., Basu, S.K., 2016. Organic Farming for Sustainable Agriculture. In: D. Nandwani (Ed), Role of Plant Growth-Promoting Rhizobacteria (PGPR) as Biofertilizers in Stabilizing Agricultural Ecosystems. Springer Cham, Switzerland, pp. 71–87.

Published

2023-09-24

How to Cite

AKÇURA, S., & ÇAKMAKÇI, R. . (2023). The Effect of Plant Growth Promoting Bacteria on Some Plant Traits in Black Cumin (Nigella damascena L.). ISPEC Journal of Agricultural Sciences, 7(3), 472–488. https://doi.org/10.5281/zenodo.8303783

Issue

Section

Articles