Biochar and Rhizobium Applications: A Promising Synergy for Improved Soybean Growth and Rhizosphere Microbial Activities


Abstract views: 51 / PDF downloads: 48

Authors

DOI:

https://doi.org/10.5281/zenodo.10819328

Keywords:

biochar, rhizobium, soybean, soil microbial activity

Abstract

This study aimed to examine the effects of biochar application and rhizobium inoculation on soybean growth and specific rhizosphere soil microbial activities. Biochar, extensively tested over the past two decades, enhances soil physical, chemical, and biological properties, thereby positively contributing to agricultural yield. Leguminous plants like soybeans exhibit improved growth by reducing the use of mineral fertilizers through rhizobial inoculation. It is an important finding that the applications provided an approximately 100% increase in plant fresh weight. In this study, the utilized biochar served as an alternative organic material, not only regulating soil properties but also enhancing rhizobial activity. Conducted as a greenhouse experiment with the soils of Şanlıurfa, this research involved dual factor experiments with rhizobium applications and two doses of biochar (1%-1.5%) applications. According to the overall average results of the study, it was determined that rhizobium and biochar applications increased plant growth and nodule formation. While nodules did not form in samples without bacterial inoculation, this number increased to 13-19 with vaccination and applications.The determined values of CO2 produce, DHA enzyme activity, and MBC content in the soil of the plant root zone increased with rhizobium inoculations and biochar applications. It was seen by correlation analysis that bacterial inoculation increased MBC contents in the soil, increased CO2 content, and increased CO2 increased total N, and was found to be significant.

References

Ahmad, M., Wang, X., Hilger, T.H., Luqman, M., Nazli, F., Hussain, A., Mustafa, A., 2020. Evaluating biochar-microbe synergies for improved growth, yield of maize, and post-harvest soil characteristics in a semi-arid climate. Agronomy, 10(7): 1055.

Akgül, G., 2017. Biyokömür: üretimi ve kullanim alanları. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(4): 485-499.

Akhtar, S.S., Li, G., Andersen, M.N., Liu, F., 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138: 37-44.

Alaboz, P., Ișıldar, A.A., 2018. Effects of apple and rose pulp-biochars on some physical properties of a sandy soil. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2): 67-72.

Amin, A.E.E.A.Z., Mihoub, A., 2021. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. Journal of Soil Science and Plant Nutrition, 21(3): 2041-2047.

Amnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Plant Physiology, x1-15.

Baronti, S., Vaccari, F.P., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Genesio, L., 2014. Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy, 53: 38–44.

Beck, T.H., 1971. The determination of catalase activity in soils. Journal of Plant Nutrition Soil Science, 130: 68-81.

Bouyoucos, G.J., 1951. A recalibration of the hydrometer method for making mechanical analysis of the soil. Agronomy Journal, 43: 434-438.

Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-total. In ‘Methods of soil analysis. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds), Chemical and microbiological properties’, Soil Science Society of America: Madison, WI, USA. pp. 595–624.

Çamoğlu, G., Genç, L., 2013. Taze fasulyede su stresinin belirlenmesinde termal görüntülerin ve spektral verilerin kullanımı. Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 1(1): 15-27.

Chapman, H.D., Pratt, P.F., 1982. Methods of analysis for soils, plants and water. Methods of Soil Analysis Part 1: Physical and Mineralogical Methods 2nd Edition. Crop Science Society of America - Soil and Crop Science. Wisconsin USA.

Dai, Y., Zheng, H., Jianga, Z., Xing, B., 2020. Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis. Science of the Total Environment, 713: 136635.

Dixit, S., 2013. Impact of bio-fertilization on morphological parameters of Vigna mungo (L.) Hepper. International Journal of Research in Plant Science, 3(1): 10-13.

Ducey, T.F., Ippolito, J.A., Cantrell, K.B., Novak, J.M., Lentz, R.D., 2013. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 65: 65-72.

Egamberdieva, D., Hua, M., Reckling, M., Wirth, S., Bellingrath-Kimura, S.D., 2018. Potential effects of biochar-based microbial inoculants in agriculture. Environmental Sustainability, 1(1): 19-24.

Egamberdieva, D., Wirth, S., Behrendt, U., Abd_Allah, E.F., Berg, G., 2016. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Frontiers in Microbiology, 7: 209.

Eroğlu, İ, Çamoğlu, G, Demirel, K., 2020. Termografi tekniği ile biber bitkisinde su stresinin ve bazı fizyolojik özelliklerin belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3): 486-497.

Firat, B., 2023. Arıtma çamurlarının hidrotermal karbonizasyonu ile elde edilen ürünlerin yararlı kullanım alternatiflerinin araştırılması. Doktora Tezi, Harran Üniversites Fen Bilimleri Enstitüsü, Şanlıurfa.

Glaser, B., Wiedner, K., Seelig, S., Schmidt, H.P., Gerber, H., 2015. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development, 35: 667-678.

Glodowska, M., Schwinghamer, T., Husk, B., Smith, D., 2017. Biochar based inoculants improve soybean growth and nodulation. Agricultural Sciences, 8: 1048-1064

Güçdemir, İ.H., 2006. Türkiye gübre ve gübreleme rehberi. Tarım ve Köyişleri Bakanlığı, 5. baskı.

Haddad, S.A., Lemanowicz, J., 2021. Benefits of corn-cob biochar to the microbial and enzymatic activity of soybean plants grown in soils contaminated with heavy metals. Energies, 14(18): 5763.

Hardy, B., Sleutel, S., Dufey, J.E., Cornelis, J.T., 2019. The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management. Frontiers in Environmental Science, 7(10).

Ho, K., Kim, J., Cho, T., Weon, J., 2012. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida), Bioresource Technology, 118: 158–162.

Isermeyer, H., 1952. Eine einfache Methode zur bestimmung der bodenatmung und der karbonate im boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 56(1‐3): 26-38.

Jin, H., 2010. Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University, Ithaca, NY, USA.

Kebede, E., 2021. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems, 5: 767998.

Köklü, N., Büyüköztürk, Ş., Çokluk Bökeoğlu, Ö., 2006. Sosyal bilimler için istatistik. Pegem A Yayıncılık, Ankara.

Komkiene, J., Baltrenaite, E., 2016. Biochar as adsorbent for removal of heavy metal ıons [cadmium (II), copper (II), lead (II), zinc (II)] from aqueou phase. International Journal of Environmental Science and Technology, 13: 471-482.

Li, Y., Li, Y., Chang, S.X., Yang, Y., Fu, S., Jiang, P., Luo, Y., Yang, M., Chen, Z., Hu, S., 2018. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biology and Biochemistry, 122: 173–185.

Li, S., Barreto, V., Li, R., Chen, G., Hsieh, Y.P., 2018. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 133: 136-146.

Lorenz, K., Lal, R., 2014. Biochar application to soil for climate change mitigation by soil organic carbon sequestration, Journal of Soil Science and Plant Nutrition, 177: 651–670.

Ma, H., Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S.D., 2019. Effect of biochar and irrigation on soybean-Rhizobium symbiotic performance and soil enzymatic activity in field rhizosphere. Agronomy, 9(10): 626.

Nadeem, S.M., Imran, M., Naveed, M., Khan, M.Y., Ahmad, M., Zahir, Z.A., Crowley, D.E., 2017. Synergistic use of biochar, compost and plant growth‐promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. Journal of the Science of Food and Agriculture, 97(15): 5139-5145.

Naseer, I., Ahmad, M., Nadeem, S.M., Ahmad, I., Zahir, Z.A., 2019. Rhizobial inoculants for sustainable agriculture: prospects and applications. Biofertilizers for Sustainable Agriculture and Environment, 245-283.

Nelson, R.E., 1982. Carbonate and Gypsum. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds). Methods of Soil Analysis Part 2: Chemical and Microbiological Properties 2nd Edition. Publisher Madison, Wisconsin USA, pp. 181-196.

Öhlinger, R., 1993. Bestimmung des biomasse-kohlenstoffs mittels fumigation-exstraktion. Bodenbiologische Arbeitsmethoden, 2: 289-311.

Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, I.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. World Agricultural Production, Washington D.C.

Palansooriya, K.N., Wong, J.T.F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S.X., Ok, Y.S., 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1: 3-22.

Paneque, M., José, M., Franco-Navarro, J.D., Colmenero-Flores, J.M., Knicker, H., 2016. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 147: 280-287.

Rostami, M., Koocheki, A.R., Mahallati, M.N., Kâfi, M., 2008. Evaluation of chlorophyll meter (SPAD) data for prediction of nitrogen status in corn. (Zea mays L.). American-Eurasian Journal of Agriculture and Environmental Sciences, 3(1): 79-85.

Sarıoğlu A., Doğan K., Kızıltuğ T., Coşkan A., 2017. Organo-Mineral fertilizer applications for sustainable agriculture. Agronomy, 161-166.

Selvakumar, G., Reetha, S., Thamizhiniyan, P., 2012. Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper). World Applied Science Journal, 16(10): 1368-1374.

Shaffique, S., Khan, M.A., Imran, M., Kang, S.M., Park, Y.S., Wani, S.H., Lee, I.J., 2022. Research progress in the field of microbial mitigation of drought stress in plants. Frontiers in Plant Science, 13: 870626.

Silva, L.G., Andrade, C.A., Bettiol, B., 2020. Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato. Tropical Plant Pathology, 45: 73–83.

Singh, H., Northup, B.K., Rice, C.W., Prasad, P.V., 2022. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1): 8.

Singh, R.K., Dhar, S., Upadhyay, P.K., G.A., D.R., Singh, V.K., Kumar, R., Barthakur, S., 2023. Soybean crop intensification for sustainable above-ground-under-ground plant-soil interactions. Frontiers in Sustainable Food Systems, 7: 1194867.

Sumner, M.E., Miller, W.P., 1996. Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods, 5: 1201-1229.

Tagoe, S.O., Horiuchi, T., Matsui, T., 2008. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant and Soil, 306: 211-220.

Thalmann, A., 1967. Über die mikrobielle Aktivität und ihre Beziehungen zu Fruchtbarkeitsmerkmalen einiger Ackerböden: Unter bes. Berücks. d. Dehydrogenaseaktivität TTC-Reduktion, Doctoral Dissertation.

Tilba, V.A., Makhonin, V.L., Zelentsov, S.V., 2021. The effect of native strains of nodule bacteria on the development of symbiotic apparatus and on the productivity of new soybean cultivars. In IOP Conference Series: Earth and Environmental Science 650(1): 012042.

Tüne, C., 2016. Farklı sulama yönetim sistemi koşullarında pamuk bitkisinde su stresinin kızılötesi termal görüntüler kullanarak belirlenmesi. Yüksek Lisans Tezi, Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Aydın.

Utomo, W., Ganika, S., Wisnubroto, E., Islami, T., 2016. Friability and aggregate stability of loamy soil after 5 years of biochar application. In EGU General Assembly Conference.

Wang, Y., Wei, Y., Sun, J., 2016. Biochar application promotes growth parameters of soybean and reduces the growth difference. Communications in Soil Science and Plant Analysis, 47(12): 1493-1502.

Wu, D., Zhang, W., Xiu, L., Sun, Y., Gu, W., Wang, Y., Chen, W., 2022. Soybean yield response of biochar-regulated soil properties and root growth strategy. Agronomy, 12(6): 1412.

Yılmaz, F.I., Kurt, S., 2018. Biyokömür ve vermikompost uygulamalarının toprağın bazı biyolojik özellikleri üzerine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 6(2): 143-150.

Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., Johan, R.B., 2017. Pyrolysis: a sustainable way to generate energy from waste. Pyrolysis, 1: 3-36.

Zheng, Y., Han, X., Li, Y., Yang, J., Li, N., An, N., 2019. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in Northeast China. Scientific Reports, 9(1): 16531

Downloads

Published

2024-03-26

How to Cite

SARIOĞLU, A., ALMACA, A., DOĞAN, K., & RAMAZANOĞLU, E. . (2024). Biochar and Rhizobium Applications: A Promising Synergy for Improved Soybean Growth and Rhizosphere Microbial Activities. ISPEC Journal of Agricultural Sciences, 8(1), 134–149. https://doi.org/10.5281/zenodo.10819328

Issue

Section

Articles